
Building an Intelligent System to Detect Respiratory Insufficiency

Vitor Daisuke Tamae

Capstone Project

Presented to the discipline

MAC0499

Supervisors:
Prof. Dr. Alfredo Goldman
Prof. Dr. Marcelo Finger

MSc. Renato Cordeiro Ferreira

São Paulo, December of 2022

Contents

List of Figures v

1 Introduction 3

2 Concepts 4
2.1 Intelligent Systems . 4

2.1.1 Use cases . 4
2.1.2 MLOps . 5

2.2 Microservices Architecture . 5
2.3 Reactive Systems . 6
2.4 Layered Architecture . 7
2.5 Hexagonal Architecture . 8
2.6 Progressive Web Application (PWA) . 9

3 Preliminary Implementation 10
3.1 Context . 10
3.2 Challenges . 10
3.3 Lessons learned . 11

3.3.1 Well-defined interfaces . 11
3.3.2 Dependency Management . 11
3.3.3 Automated Tests . 12
3.3.4 MLOps . 12

4 Architecture 13
4.1 Objectives . 13
4.2 Context . 13
4.3 Model Registry . 14

4.3.1 Description . 14
4.3.2 Implementation . 15

4.4 Message Service . 16
4.4.1 Description . 16
4.4.2 Implementation . 18

4.5 Storage . 19
4.5.1 Description . 19
4.5.2 Implementation . 20

ii

CONTENTS iii

4.6 Back-end Services . 20
4.6.1 API . 21
4.6.2 Model Server . 21

4.7 UI . 22

5 API 23
5.1 Core . 23
5.2 Web Server . 24
5.3 Authentication . 25
5.4 Database . 27

5.4.1 Description . 27
5.4.2 Implementation . 28

5.5 Inference Requests . 29
5.6 Deployment . 31

6 Model Server 32
6.1 Registry Adapter . 32
6.2 Inference Messages . 33
6.3 Deployment . 34

6.3.1 ML Pipeline . 34
6.3.2 Microservice . 35

7 UI 36
7.1 User Access . 36
7.2 Inference Form . 37
7.3 Inference List . 37

8 Tests 39
8.1 TDD . 39
8.2 Test Hierarchy . 39

8.2.1 Unit Tests . 40
8.2.2 Integration Tests . 40
8.2.3 System Tests . 41

8.3 Multi-Stage Build . 42
8.4 CI Pipeline . 42

9 Conclusion 43
9.1 Results . 43
9.2 Next steps . 43

9.2.1 Model feedback . 44
9.2.2 NATS improvements . 44
9.2.3 Load balancer . 44
9.2.4 UI improvements . 44
9.2.5 Training pipeline . 44

iv CONTENTS

Bibliography 45

List of Figures

2.1 Intelligent System applications. 4
2.2 Origins of the MLOps set of practices . 5
2.3 Reactive systems benefits diagram . 6
2.4 Hexagonal Architecture diagram. The application contains the business logic

and it communicates with the adapters through the ports. 8

3.1 Timeline of the SPIRA project: this research aims to build an inference system
for SPIRA. Icons created by Freepik - Flaticon. 10

4.1 Architecture of the SPIRA intelligent system . 14
4.2 MLFlow UI. The UI can be used to track the list of models in production, the

staging and production versions, and also past experiments. 16
4.3 NATS topic diagram. The API sends inference messages to each topic 18
4.4 NATS UI. The UI can be used to perform server health-checks, or check live con-

nections and subscriptions. 19
4.5 MinIO Server UI. The audio files are stored in a bucket and can be consulted in

the directory named with the corresponding inference id 20
4.6 Diagram showcasing the logos of the tools used to implement the inference

system. 21

5.1 Architecture of the API service. 23
5.2 User creation sequence diagram. 25
5.3 User authentication sequence diagram. 27
5.4 Mongo Express UI. The UI can be used to directly interact with the database. . . 29
5.5 Database sequence diagram for inference requests. Once inference requests

are received, the web server calls the core, which then calls the database port to store
the entity in the Mongo DB. 29

5.6 File storage sequence diagram for inference requests. Audio files are stored
in MinIO server to be retrieved by Model Servers later. 30

5.7 Message service sequence diagram for inference requests. Published message
will be received by a Model Server subscribed to the model topic. 30

5.8 Docker Hub image repositories for the API service. Images are automatically
pushed to Docker Hub upon new tag creations in GitHub. 31

6.1 Architecture of the Model Server. 32
6.2 Model Server retrieving audio files from MinIO server 34

v

vi LIST OF FIGURES

6.3 Model Server using the model to make predictions 34
6.4 Docker Hub repositories of the Model Server and the model registry . . . 35

7.1 Inference App installed in a mobile device. 36
7.2 Inference list page for desktop users . 37
7.3 Inference form page. Users fill the form before making the audio recordings. . . . 38
7.4 Inference audio recording page. Users need to follow the instructions in the

screen to record the audios. 38
7.5 Sign In page in the inference app. Users should have an account to access the

system. 38
7.6 Inference form page for mobile users. The application changes the layout of the

page to a cards display instead of a table. 38

9.1 MLOps milestones achieved in the research . 43

Abstract

Respiratory insufficiency is a symptom caused by the inadequate gas exchange performed by
the respiratory system. SPIRA is a research project created during the COVID-19 pandemic to
detect respiratory insufficiency via speech analysis based on Machine Learning models. The project
is currently preparing to train a new generation of models that will be validated in hospitals with
the help of medical personnel. Due to the demand for validation, one of the steps of this preparation
phase is to build a new system that applies these models. This monograph describes the planning,
implementation and deployment of an intelligent distributed inference system that allows medical
personnel to perform a respiratory insufficiency pre-diagnosis using the models created by SPIRA.
The research shows the advantages in responsiveness and resilience obtained by adopting a reactive
microservices architecture. Moreover, it emphasizes the importance of MLOps in modern Machine
Learning Engineering through the lessons learned from the preliminary system. The impacts on
quality obtained by following these principles are highlighted with the implementation of a pipeline
and a registry to automate the deploy of new models in the final version of the inference system.

Keywords: SPIRA, Respiratory Insufficiency, Machine Learning Engineering, Intelligent Systems,
Reactive Microservices, Hexagonal Architecture, MLOps

1

https://spira.ime.usp.br/coleta/

Resumo

Insuficiência respiratória é um sintoma causado pela troca inadequada de gases feita pelo sis-
tema respiratório. SPIRA é um projeto de pesquisa criado durante a pandemia de COVID-19 para
detectar insuficiência respiratória via análise de fala baseada em modelos de Machine Learning.
O projeto está atualmente se preparando para treinar uma nova geração de modelos que serão
validados em hospitais com o acompanhamento de equipes médicas. Devido à demanda por vali-
dação, uma das etapas desta fase de preparação consiste em construir um novo sistema que aplicará
estes modelos. Esta monografia descreve o planejamento, a implementação e a implantação de
um sistema de inferência distribuido e inteligente que permite que equipes médicas realizem um
pré-diagnóstico de insuficiência respiratória utilizando os modelos criados pelo SPIRA. A pesquisa
mostra as vantagens em responsividade e resiliência obtidas através da adoção de uma arquitetura
reativa de microsserviços. Além disso, é enfatizada a importância do MLOps na Engenharia de
Machine Learning moderna através das lições aprendidas a partir do sistema preliminar. Os im-
pactos em qualidade obtidos seguindo esses princípios são ressaltados com a implementação de um
pipeline e um registro para automatizar a implantação de novos modelos na versão final do sistema
de inferência.

Palavras-chave: SPIRA, Insuficiência Respiratória, Engenharia de Machine Learning, Sistemas
Inteligentes, Microsserviços Reativos, Arquitetura Hexagonal, MLOps

2

https://spira.ime.usp.br/coleta/

Chapter 1

Introduction

Respiratory insufficiency or failure is a well-known medical symptom resultant from an inade-
quate gas exchange performed by the respiratory system (Cam65). It may cause severe symptoms
such as hypoxemia, a reduction in the concentration of oxygen in bloodstream, and hypercapnia, a
rise in arterial carbon dioxide levels (RK03). These conditions may lead to cough, tiredness, short-
ness of breath, and in extreme cases, death. This symptom may be caused by various diseases.
Examples of them are the flu, severe asthma and heart conditions (SLK09; CCN+00; DS94).

In 2020, respiratory insufficiency was identified as one of the severe symptoms of COVID-19 in-
fection (SVdB22). The symptom is aggravated by a condition called silent hypoxia, low blood oxygen
concentration without breath shortness (CF20)(TLJ20), which particularly hinders its diagnosis.

There were several attempts to obtain early detection of silent hypoxia (Teo20) (RTA+21).
SPIRA is a research project created during the COVID-19 pandemic to identify respiratory insuffi-
ciency via speech analysis based on Machine Learning models (CGC+21). It involves doctors, speech
therapists, linguistics, and computer scientists from different fields (artificial intelligence, computer
music, software engineering) and was idealized as a tool for doctors and nurses to pre-diagnose this
symptom.

During the first stage of the project, the authors of (CGC+21) created a ML model that could
be used to identify respiratory insufficiency with reasonable accuracy, enabling a new phase of the
project focused on the development of a more sophisticated generation of models.

This new generation now should be validated by carrying out inference experiments with pa-
tients from different hospitals under the supervision of medical personnel. These professionals are
not expected to have familiarity with ML related coding tools, therefore a system is needed to
properly provide inference features for them. Nevertheless, SPIRA does not have a system capable
of providing this functionality yet.

The main goal of this research is to allow physicians, nurses and other related
hospital personnel to perform a pre-diagnosis of respiratory insufficiency using SPIRA
models. Milestones to achieve this objective are described in more detail later at Chapter 4.

This monograph describes the planning, development and implementation of the inference sys-
tem created to serve this new generation of SPIRA models and it is subdivided as follows: Chapter 2
describes the theoretical basis, Chapter 3 shows a preliminary implementation of the system, Chap-
ter 4 describes the architectural features of the inference system, Chapter 5, Chapter 6 and Chapter 7
describe the implementation details of each component, Chapter 8 describes how the system was
tested and Chapter 9 shows the results obtained.

3

Chapter 2

Concepts

2.1 Intelligent Systems

2.1.1 Use cases

An intelligent system is a software system that uses artificial intelligence, often produced via
machine learning, offering support to it to achieve an objective (Hul18).

Figure 2.1: Intelligent System applications.

Intelligent systems are appropriate when either there is no analytical solution for a certain
problem or the analytical alternative is too expensive given limited computational resources. In
these cases an empiric solution via machine learning is more suitable and affordable.

Examples of such problems are:

• problems that require a considerable amount of work.

• open-ended problems, which continue to grow over time.

• time-changing problems, where the right answer changes over time.

• problems that are intrinsically hard.

Detecting respiratory failure is an intrinsically hard problem (TLJ20). The symptom may man-
ifest differently depending on the disease associated with it, such as in the case of Silent hypoxia.
This is also an indication that the diagnosis is susceptible to changes over time.

As described in Chapter 1, the use of machine learning models showed to be a good solution
for pre-diagnosing respiratory insufficiency. Therefore, an intelligent system is necessary to provide
the inferences and manage the life cycle of the SPIRA models.

4

2.2 MICROSERVICES ARCHITECTURE 5

2.1.2 MLOps

In the field of software engineering, DevOps practices are used to shorten the development life
cycle, providing continuous delivery to deploy new features more efficiently (EGHS16).

Unlike general software features, an ML model is an entity whose business logic is dependent
on the data consumed during the training stage. This leads to many problems such as the lack of
reproducibility and difficult deployments (Hut18; TOS+20).

For this reason, DevOps culture in the Machine Learning field has originated a new set of
practices called MLOps, which aims to deploy and maintain machine learning models reliably and
efficiently (TOS+20).

Figure 2.2: Origins of the MLOps set of practices

Even though its behavior is determined by a particular dataset, a ML model is no more than
an artifact. Therefore, it is possible to store it, keep track of its version and reproduce it when
needed, which is a particularly relevant feature for the model validations that will be conducted in
the SPIRA project through the inference system.

In DevOps, Continuous Delivery pipelines, also known as CD pipelines, are created to automat-
ically deploy new software. Likewise, an ML pipeline can be created to automate the deployment
of ML models. A ML pipeline not only shortens model creation time span considerably, but it is
also a way to standardize model development procedures. Hence, it may further improve the overall
productivity for the production of new models inside the SPIRA project.

Nowadays, there are several MLOps tools such as MLFlow, KubeFlow and Comet that can be
used to implement each of the practices presented previously. Besides storing model artifacts and
creating an ML pipeline, they can also be used to run experiments with the models and monitor
their performance in production.

Preliminary implementations not adopting such an MLOps approach are described in Chapter 3.
These experiences provided a motivation to search for a more sophisticated procedure to deploy
SPIRA models in the current research and its planning will be further described in Chapter 4.

2.2 Microservices Architecture

A microservice is a small autonomous service that performs a single functionality. A microser-
vices architecture is an architectural style where the system is composed by microservices (Bon16).

Implementing a microservices architecture offers many benefits to the system:

6 CHAPTER 2. CONCEPTS 2.3

• Modularity: contrary to the monolithic multi-functional paradigm, if a service contains a set
of well-defined functionalities, the architecture can help modularizing them into self-contained
microservices and avoid turning the system into a "big ball of mud" (FY97).

• Horizontal Scalability: a service may be scaled according to its load, without the need to
change the remaining system (DLT+17). Hence, resources may be distributed more efficiently
to optimize the performance of the application.

• Feature Delivery: with each microservice having its own isolate deploy, features can be
implemented more frequently, because developers will not interfere with one another while
working in different microservices.

• Poliglotism: isolation between services also allows each of them to use the technology that is
the most suitable for their functionality, as long as they respect the established communication
protocols.

Certain trade-offs need to be taken into account when adopting a microservices architectural
style. In a distributed system, such as one using a microservices architecture, additional uncertainties
are added due to the lack of a consistent and reliable shared memory between nodes. Hence, services
are not able to fully rely on one another to make a decision.

This uncertainty is very present in the concept of time. Timestamps and clocks are unique for
each service, therefore a distributed system has no universal concept of "now" that can be used to
synchronize them. One solution is to accept this uncertainty and develop strategies to cope with it,
such as handling eventual consistency and making sure the communication protocols are associative
(batch-insensitive), commutative (order-insensitive), and idempotent (duplication-insensitive). As
it will be presented later in Chapter 4, these properties are important for planning the architecture,
but also for choosing the right tools to implement the system.

The inference system will contain multiple intelligent microservices, each containing a SPIRA
model, all of them communicating with another microservice responsible for providing an inference
API that will receive requests and store results. The next section shows how the trade-offs of the
microservices architecture will be handled in this research.

2.3 Reactive Systems

A system is reactive when it is built based on the Reactive Principles (rea14). More precisely, a
reactive system relies on asynchronous message-driven communication between components in an
attempt to solve some of the inherent problems of distributed systems such as the ones presented
for the microservices architecture.

Figure 2.3: Reactive systems benefits diagram

The key of a reactive system is to manage the existent uncertainty between components directly
in the architecture level. That is, to design autonomous components that expose their protocols

2.4 LAYERED ARCHITECTURE 7

and clearly define what they promise, what behavior will trigger, and how the data model should
be used (rea14).

Moreover, a reactive system should give each component the freedom to make its own business
logic decisions. When a node sends a call to another one, that node must have the ability to commu-
nicate momentary degradations (such as overloads) and must have the ability to not respond when
that is appropriate. This requires the protocol between them to be asynchronous and event-driven,
because component-level failures can only be contained if the communication protocol between the
services anticipates the possibility of unsuccessful or late responses. Neither should interrupt their
internal functioning due to these failures (rea14).

Asynchronous communication also leads to temporal decoupling, because one node does not re-
quire the availability of another node to communicate. Components become even more autonomous
and the system gets more reliable (Bon16).

Reactive systems also aim to create space decoupling by making use of network communication
to avoid allocating all its components in one specific location. This reduces the dependency on
specific hardware, which are susceptible to malfunctioning and inaccessibility, and allows the nodes
to be distributed in different locations to compose the system. Such freedom makes the system
elastic and scalable, as it can dynamically control its resources to satisfy both momentary and
permanent increases in demand for a service (Bon16).

The inference system developed in this research will be used by multiple hospitals to validate
new models created by the SPIRA project. Thus, a certain degree of volatility in the demand for
each model is expected both upon their creation and also in case they outperform other models.
Therefore, the intention is to follow the concepts presented above to develop a reactive system that
is capable of adapting to these changes in demand.

2.4 Layered Architecture

The layered architecture is an architectural style in which a system is designed in layers, each
containing components related to a specific role within the application.

While the number of layers and their roles are flexible, architectural patterns implementing a
layered architecture usually contain the following three layers:

• Presentation Layer: responsible for abstracting inner data to the user and vice-versa. Note
that this layer has no concerns regarding how the data is treated and retrieved in the appli-
cation.

• Business Layer: responsible for executing business rules of the application. Likewise, this
layer is neither involved in how the data is displayed to the user nor the origin of the data.

• Database Layer: solely responsible for storing application relevant data.

Besides the responsibilities of each layer, there are additional constraints used to maintain the
service organization: a layer only interacts with two other layers and data-flow is bidirectional, i.e.,
either from the user to the system or the other way around.

While the layered architecture offers topological constraints to organize responsibilities in the
service level, there are inherent pitfalls of the architectural style such as undesired dependencies
between layers and infiltration of business logic in user interface code.

In the example above, the presentation layer depends on the business layer, which then depends
on the database layer, violating the Dependency Inversion Principle (DIP) (Mar96), as business
rules depend on database technologies.

Some of the known consequences of those pitfalls are:

• developers are often not able to isolate and properly test the business logic, and

• the application is highly coupled with human-driven use, precluding the possibility of batch-
running the system.

8 CHAPTER 2. CONCEPTS 2.5

The violation of the DIP motivated the creation of other architectural patterns where the layers
were organized in an onion-like structure with the business logic contained in the innermost layer of
the design. Examples of them are the clean architecture (MGB+18), the onion architecture (jef08),
and the hexagonal architecture (Coc).

2.5 Hexagonal Architecture

The hexagonal architecture is a layered architectural pattern described by Alistair Cockburn in
an attempt to deal with recurrent structural problems of object-oriented programming and layered
architectures (Coc).

As commented in the previous section, communication between layers in a layered architectural
pattern must be properly designed and managed to avoid logic infiltration. While this is crucial for
the system maintainability, the layered architectural style neither specifies how this communication
should be done nor how the abstractions should be converted. The hexagonal architecture solves
this problem by implementing a new layer above the business layer solely responsible for managing
this communication.

The architecture is then divided in three main layers:

• the core contains all the business logic of the system. It has a functional nature represented
in the form of use cases, the methods of the business logic.

• the adapters compose the outer layer of the architecture. They are responsible for the
execution of business logic, signaling the proper technology to take action. Examples of adapter
components are database clients and API endpoints.

• the ports layer is responsible for managing the communication between the core and the
adapters. The ports are primarily responsible for establishing the contract between the two
other layers. They also convert the abstraction of an use case to the abstraction of an adapter
method and vice-versa.

Ports are also divided in two categories: primary and secondary. The primary ports, also called
driving ports, are the ones that drive the core calling the business logic. Example of it are REST
API adapters. The secondary ports, also called driven ports, are the ones that are called by the
business logic to execute some action. Examples of it are database adapters.

Figure 2.4: Hexagonal Architecture diagram. The application contains the business logic and it com-
municates with the adapters through the ports.

It is important to note two aspects of this design:

• the core is agnostic to the implementation of the adapters and their technology, and

• the ports are the boundaries of the business logic.

2.6 PROGRESSIVE WEB APPLICATION (PWA) 9

both bring immediate benefits to the system. If there is a need to change the technology of a
component in the system, the core code can be reused and one can simply create the new adapter
and connect it to the port. Additionally, ports also become the entry point for testing the business
logic, since the ports layer naturally isolates it.

The main difference from many architectural patterns to the hexagonal architecture is that most
of them do not fully isolate the business logic from external dependencies. The MVC pattern, for
example, implements this idea for the controller layer, but not others.

This architecture also facilitates test automation with the use of mock adapters, which further
helps asserting the correctness of the system as it will be discussed in Chapter 8.

The system developed in this research requires many distinct technologies for its implementation,
hindering the use of an architectural pattern that does not fully isolate the business logic from the
technologies. For this reason, the hexagonal architecture will be adopted.

2.6 Progressive Web Application (PWA)

Progressive Web Applications are cross-platform compatible web applications that are able to
work offline and can be added to device home screens. The term was first used in 2015 (Rus15)
to describe apps that took advantage of modern browser features that enable users to convert web
apps into native apps of their operating system.

Examples of such features are service workers, which are web workers used by PWAs as a
proxy that checks the availability of the remote server and stores cache content for the application.
This cache stores the UI content, which enables a more native-like user experience without the
dependence on web connectivity. It also allows content to be loaded progressively from a initial
layout provided by local storage, hence the name Progressive Web Application.

As it will be described in Chapter 2, using a PWA as the front-end tool to collect inferences has
many advantages over native solutions.

Chapter 3

Preliminary Implementation

3.1 Context

The SPIRA project started with the first voice audio recording collection phase, as described in
Figure 3.1. These recordings were then used by researchers to produce their first machine learning
model and prove the feasibility of symptom detection (CGC+21). Currently, a second collection
phase is being conducted and the new data will be used to train a new generation of SPIRA
models.

In parallel to that, there were attempts to encapsulate SPIRA models inside a service and make
it available for inferences requests. While the system was successfully developed and deployed, there
were many challenges faced in this phase that could either be avoided or better handled to facilitate
its implementation.

For the purposes of this research, these first attempts will be referred as the preliminary system,
while the current project will be referred as the definitive system from now on. The definitive system
was heavily based on the lessons learned from the mistakes made in this preliminary implementation.

Proved possible
to detect

symptom with
models

A more
sophisticated
generation of

models

Definitive inference
system for second

generation of
models

First audio
collection

Second collection
phase with more

detailed recordings

Preliminary
inference system
with first SPIRA

models

Collection 1 Creation 1 Collection 2 Creation 2 Preliminary Inference

Figure 3.1: Timeline of the SPIRA project: this research aims to build an inference system for SPIRA.
Icons created by Freepik - Flaticon.

3.2 Challenges

The model was developed in an preliminary process where the training source code was not
based on any specific design pattern or convention. Rather than maintainability, feasibility was its
primary goal.

10

3.3 LESSONS LEARNED 11

The main consequence of that was the absence of a well-defined interface of the model. Hence,
developers had to do create a model server adapted to create an entry point for this single model.
Particularly, input and output data processing were responsible for the great majority of the changes.

After the adjustments, developers and researchers needed to validate the model produced by
the new pipeline. The goal was to ensure its predictions were coherent with the results presented
in (CGC+21) and the validation was divided in three stages:

• First stage: the first goal was to check if all the dependencies were compatible with the
ones used in the article. This was necessary because many machine learning libraries are
under constant change due to heavy development and can change their behavior considerably
between versions.

• Second stage: subsequently, automated tests were created to isolate errors in the code. As
stated previously, input and output processing methods were the ones which underwent most
changes. Therefore, special attention was given to ensure their correctness.

• Third stage: finally, the third step was to do a more detailed analysis of results. Unfor-
tunately, true reproducibility was impossible, since the researchers did not use any MLOps
process while creating their preliminary model. Therefore, there was no way to regenerate
the exact trained model used in the experiments. Consequently, the disparity in metrics was
minimized, but not fully eliminated.

After the validation process, the deployed system was able to process inference calls via HTTP
protocol and retrieve prediction history. All results were stored in a local database and they were
used for a more thorough analysis of the model performance afterward.

3.3 Lessons learned

The challenges faced during the preliminary implementation showed critical points of the devel-
opment process and the system design that needed to be addressed for the definitive version. The
sections below present the main problems and the proposed solution for them.

3.3.1 Well-defined interfaces

It was clear after the preliminary attempt that the presence of an interface between the model
and the model server was crucial for the scalability of the SPIRA Inference system. This is because,
without defining the boundaries of the roles of the model server and the model class, it would
be necessary to adapt the model to fit the necessities of each new trained model. This would
make system scaling infeasible when the number of models became considerable, besides all the
maintenance problems that each entry point would cause.

With such an interface, the intention was to delegate the processing of input and output data
for the model class, rather than the model server. Models should directly consume inference-related
metadata and process it according to its own particularities before using it for prediction. The
same should happen to the output value, that should also be converted back to the inference result
abstraction.

3.3.2 Dependency Management

After the validation process, dependency management needed more attention than initially
planned. This step is also crucial during the containerization of the system, as dependencies are all
installed in compilation time.

Another concern comes with library updates, where one might update a dependency and disre-
gard any changes necessary to sub dependencies, which are a potential cause of system disruption.
Ideally, this process should not be done manually for the sake of long-term maintainability.

12 CHAPTER 3. PRELIMINARY IMPLEMENTATION 3.3

3.3.3 Automated Tests

During the preliminary attempt, tests showed to be a useful tool to detect failures in the code.
They are, undoubtedly, necessary for system maintenance. Despite such effectiveness, the develop-
ment process of the definitive version should follow the procedures described in the TDD section to
better track and test the system requirements.

Another important consideration is that the preliminary version was an encapsulation of the
model with no reactive features in it. As a consequence, test hierarchy was not of much importance
as there was no need to test the integration of the components of the system. With the new
inference system architecture, nonetheless, test hierarchy does matter, as there are many levels in
which the system needs to be tested to ensure its integrity, from the internal functioning of each
of its components to the integration between them. Details about the strategies used for tests are
described later on Chapter 8.

3.3.4 MLOps

Reproducibility of model behavior was infeasible during the preliminary attempt and a solution
was certainly needed for model storage, versioning and monitoring. As cited in Chapter 2, there
are many solutions that can be used to manage the life cycle of a model and track its prediction
history. This is an important tool to audit the system by enabling true reproduction of a model.

Chapter 4

Architecture

4.1 Objectives

The SPIRA inference system is a reactive microservices intelligent system that pre-diagnoses
respiratory insufficiency. To describe this architecture, it is important to describe this project’s
research goals. As described in Chapter 1, the goal of this research is to allow medical personnel
to perform a pre-diagnosis of respiratory insufficiency using SPIRA models. To accomplish this
objective, the research will be divided in the following milestones:

• Create a solution to store new models
Currently, there is no default procedure to store newly trained models. The inference system
needs such a solution to encapsulate SPIRA models with a server and expose them to the
system.

• Turn models accessible
After a model is trained and evaluated, it needs to be deployed through a service that will
wrap it and make it accessible to process inference requests. Currently, a new generation of
models is under development, therefore the serving system should be scalable enough to keep
up with this process. It is an even greater challenge to build a model serving infrastructure
that can wrap all variants of SPIRA models.

• Create a system to manage models and inferences
Once the Microsservices carrying the models are ready, an orchestrator is needed to redirect
inference requests, process predictions, and organize the pre-diagnoses. The system should
store all the data regarding inference metadata and results, while being resilient enough to
cope with the time needed to process the inferences.

• Provide an App to be used by medical personnel to access the models
At last, the models ought to be used by medical personnel to determine the pre-diagnosis.
Therefore, a new App is needed to provide them with this access.

4.2 Context

The architecture of the entire SPIRA system is described in Figure 4.3.

13

14 CHAPTER 4. ARCHITECTURE 4.3

API Data
Collection

Metadata

AudiosTrainingMLFlow

Model
Server

API
Inference

Training

Inference

Inference

Data
Collection

Respiratory
Insufficiency
Classifier

Requests

Responses

Metadata

Audios

Service

File System PWA

Database

Queue

Model

Figure 4.1: Architecture of the SPIRA intelligent system

The upper half of the diagram represents the training sub-system and it includes the audio
data collection and storage processes, model training, model creation and finally model storage.
The collection is done through a PWA designed to record voice audios of patients speaking specific
sentences according to a data collection protocol.

The data sets will subsequently be used by the data science team to create new machine learning
models. These models are then stored in a server where they become available for use by the rest
of the system.

The lower half of the diagram is the definitive inference sub-system being implemented in this
research. It its composed by a PWA that sends inference requests to the back-end service also
developed in this project, specifying the desired model created with the data from the training
sub-system. The inference request is then processed by an orchestrator API and subsequently sent
to the corresponding microsservice carrying the target model. The pre-diagnosis generated by the
prediction is then sent back to the API and becomes available for the users.

From now on, the terms "API" and "API Service" will be used to refer to the orchestrator API
microservice, while the term "Model Server" will be used to refer to the microservice that carries a
ML model and makes processes inferences with it.

Since the objective of the inference system is to provide access to all SPIRA models, there will
be multiple model servers deployed, each containing their own model retrieved from the model
registry, enabling the API to send prediction requests to any of them.

4.3 Model Registry

4.3.1 Description

As observed during Chapter 3, one of the main challenges found during development was the
reproducibility of results, since models used in (CGC+21) could not be replicated. Therefore, a
model registry is crucial to follow MLOps practices during the development of the next generation
of SPIRA models.

4.3 MODEL REGISTRY 15

The chosen solution was the MLFlow tracking server (mlf22). MLFlow is a platform created
by Databricks to manage the lifecycle of Machine Learning models. It is agnostic to ML libraries,
making it compatible with any technology used to develop Machine Learning models, including
PyTorch, the most commonly used library inside the SPIRA project, and other libraries such as
Keras and TensorFlow. Therefore, if developers decide to change the technology used to create
models, MLFlow will be equally compatible with the new libraries of choice.

The model registry is composed by three distinct containers:

• MLFlow server: The server hosting the MLFlow model registry.

• Database: The database is used by the server to store all metadata related to experiments
and model versioning.

• Storage Unit: It is used by the server as an artifact store for model files. The storage unit
will be explained in more detail in Section 4.5.

Model Servers connect to the model registry during initialization to retrieve one of the models
stored in it. Details on how this retrieval is done will be explained in Subsection 4.6.2.

While the goal of this research is to use this component as a model storage solution, the registry
is actually agnostic to the existence of the inference system. Developers may also use it to retrieve
models for any other purpose besides inferences such as for model performance comparisons or for
running independent experiments. As the server can keep track of a production version of each
model, it is possible to change the tag of a model to production whenever it is ready to be deployed
to the system.

4.3.2 Implementation

The registry used is a docker container with a python image which downloads the MLFlow CLI
and initializes a server using it and was first developed by (reg22). In the development repository
(mod22), where the image is defined, the Dockerfile is described below:

1 FROM python:3.8 as mlflow_base

2

3 ENV POETRY_VERSION=1.1.13

4

5 WORKDIR /project

6

7 RUN apt-get update

8 RUN pip install --upgrade pip

9 RUN pip install "poetry==$POETRY_VERSION"

10 RUN poetry config virtualenvs.create false

11

12 COPY pyproject.toml poetry.lock .tool-versions ./

13

14 RUN poetry install --no-interaction --no-ansi --no-root

15

16 EXPOSE 5000

The file first pulls a python image and installs poetry package. Poetry then uses the poetry.lock
file, where dependencies for the registry are declared, and uses it to install them. Finally, the internal
port 5000 of the container is exposed, which is the default port used by MLFlow server.

The command to initialize the server itself is specified directly in the docker-compose file as
follows:

16 CHAPTER 4. ARCHITECTURE 4.4

1 'mlflow server \

2 --backend-store-uri \

3 mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:3306/${MYSQL_DATABASE}\

4 --default-artifact-root s3://mlflow/ --host 0.0.0.0'

It is necessary to specify both the metadata and the artifact storages. The metadata storage
used is a MySQL relational database container, whereas the artifact storage is a MinIO bucket
storage system. While the bucket is of exclusive use for MLFlow, the same MinIO instance is used
by the server to store audio files.

Afterwards, the docker image can be uploaded to DockerHub and downloaded back in production
to initialize the server. This process was automated with a CD Pipeline using GitHub Actions.
Details on how the pipeline was setup will be described in Subsection 6.3.1.

Models stored in the server can be revisited using the MLFlow server UI as shown in Figure 4.4.

Figure 4.2: MLFlow UI. The UI can be used to track the list of models in production, the staging and
production versions, and also past experiments.

The UI is exposed in the same port as the MLFlow server, hence in a private port. Developers
with access to the production machine might then use it to control the staging and production
versions of each model and also create new models directly from it, despite this not being the
recommended method to register new models. The server supports programmatic registration of
models and the ML pipeline setup to do that will be described in Section 6.3.

4.4 Message Service

4.4.1 Description

As described in Chapter 2, there are numerous benefits in using event-driven communication.
Most importantly, the system becomes reactive, therefore more resilient and horizontally scalable.
The two mostly utilized solutions to implement such asynchronous communication are message and
queue services.

While the current plan is to maintain one communication stream for each model deployed in
production, giving margin to implement a queue service, there are three reasons for not using queues
for this system:

4.4 MESSAGE SERVICE 17

• Harder Model Server setup: Each newly created model needs to be registered and a
new server to be deployed with it. Using a queue service would also require a new queue
to be deployed with each server, which would make this setup more complicated. Using a
message service brings the benefit of using a single broker to manage all communication
stream, therefore there is no need for deploying a new infrastructure for new models introduced
in the system.

• 1:N requests: Although the system was implemented to send inferences to a single model
for each inference request, it might be a future feature request to send inference requests
to multiple models for comparing results from the same input. A message service provides a
simplified 1:N communication, as many listeners can subscribe to the same stream, while queue
services would require the API to send messages proportionally to the number of models.

• N:1 updates: Message services also enable all Model Servers to send their results to a single
topic. If a queue service were to be used instead, each deployed model would also require an
additional queue solely for sending their own updates. The orchestrator API would also need
to scale the number of threads listening to incoming messages from the queues, which would
further complicate its implementation.

Once an inference request gets to the API, the request metadata is stored in a NoSQL database
and subsequently encoded in the form of a message. The API is responsible for sending this message
to a broker in a specific channel and delegates the inference for the consumer on the other end.
Once the prediction is complete, the results may be sent encoded as another message. The API
recovers this result and update the database, making it available for retrieval in the UI.

The message service to be used is NATS (nat22), an open-source cloud-native solution that is
easily scalable. NATS maintains communication streams through a topics system. A producer may
publish messages in a topic to a broker and consumers willing to listen to the given topic may
subscribe to it to start receiving published messages.

In the inference system, there is a single broker with each model subscribed to an exclusive
topic. Once the API receives a request, it retrieves the correct channel to be used in the database
and then sends the message in the given topic. The Model Server subscribed to it then proceeds
with the prediction.

Updates are all sent to an updates topic. The API subscribes to this topic and all Model Servers
publish messages in it.

Handling NATS message-driven communication requires a producer inside one service and a
consumer on another one. In the context of the hexagonal architecture, a producer can be abstracted
in the form of a message service adapter and the consumer as a running thread adapter. The latter
will be called the listener adapter from now on.

The message service adapter is the point of communication between the servers and the broker.
It is responsible for encoding and sending inference requests to a certain topic. This section of the
adapter is called by the use cases triggered by the web-server. The incoming inference requests
schedule the messages as shown in Figure 4.3 and a successful status is returned to the front-end
in case the message is successfully sent.

The same adapter is also responsible for receiving and decoding messages of a given topic.
Receiving a message on push mode, i.e. actively wait for messages in a given topic, depends on
having a process exclusively for calling the receiver method. This process is created by the listener
adapter.

The listener calls the business logic use case of receiving a message in a given topic, the message
service adapter is then called to wait for a message and, once arrived, the received message triggers
the database update in the orchestrator API and the model prediction in the Model Server. Once
completed, the method ends and the listener restarts this procedure.

18 CHAPTER 4. ARCHITECTURE 4.4

Figure 4.3: NATS topic diagram. The API sends inference messages to each topic

4.4.2 Implementation

The NATS broker or server is a docker container pulling the NATS image. The service in the
docker-compose file is described below:

1 nats:

2 image: nats

3 restart: always

4 ports:

5 - '${NATS_CLIENT_PORT}:${INNER_NATS_CLIENT_PORT}'

6 - '${NATS_UI_PORT}:${INNER_NATS_UI_PORT}'

NATS requires two distinct ports. By default, 4222 is the one used by consumers and producers
to communicate with the broker and 8222 is a monitoring UI where connections and messages can
be checked. These ports are exposed in the internal Docker network of the system. They are also
mapped to private ports in the local machine (localhost), where they become available for users
with access to production.

4.5 STORAGE 19

Figure 4.4: NATS UI. The UI can be used to perform server health-checks, or check live connections and
subscriptions.

NATS also exposes a third port 6222 for clustering support, however this feature will not be
implemented in this research and may be considered as a future improvement for the messaging
system.

4.5 Storage

4.5.1 Description

The file storage has two distinct roles in the system:

• Audio recordings: Inference requests contain audio recording files that are crucial for result
prediction. As explained previously, the Model Server and the orchestrator API communicate
via message broker. NATS, as many other message services, have a message size limit of 1MB,
which is not enough space for the necessary audio recordings. Therefore, a file storage solution
where the API is able to share recording with the Model Servers is necessary.

• MLFlow Artifacts: MLFlow server delegates data storage functionalities to other compo-
nents. One of the delegations is for artifact storage, which require a file storage service.

MLFlow documentation recommends an AWS S3 bucket or similar file system like service as the
default artifact storage. Therefore the solution should be preferably compatible with the S3 service.
It is also of the interest of the SPIRA project to maintain all audio recordings stored on premise,
as these recordings may also be used for model training or data auditing conducted through the
privacy related regulations (lgp18).

Due to these requirements, the chosen solution was MinIO simple storage (min22). The MinIO
solution is compatible with the Amazon S3 cloud service and stores all its contents in a container
volume mounted in the local file system.

Like the S3 simple storage, MinIO organizes the stored files as objects inside buckets. SPIRA
contains two buckets. The first bucket is used by the API to store the incoming audio files in
directories referenced by the inference ID. Model Servers can then access these files using MinIO
client. The second bucket is used as the default artifact storage of the model registry. This bucket
is not accessed directly by any part of the system other than the registry itself.

Likewise the message service, a simple storage adapter is used by the API and the Model Server
to interact with MinIO. The API requires a method to store files and the Model Servers only require
a method to retrieve them.

20 CHAPTER 4. ARCHITECTURE 4.6

Storing should happen before the inference message is sent to NATS server. This way, it is
guaranteed that the Model Server will find the necessary files in MinIO by the time it receives the
request and starts the prediction.

4.5.2 Implementation

The file storage server is a docker container pulling the MinIO image. The service in the docker-
compose file is described below:

1 minio:

2 image: minio/minio

3 restart: always

4 ports:

5 - '${MINIO_CLIENT_PORT}:${INNER_MINIO_CLIENT_PORT}'

6 - '${MINIO_UI_PORT}:${INNER_MINIO_UI_PORT}'

7 command:

8 - server /data

9 --console-address ':${INNER_MINIO_UI_PORT}'

10 --address ':${INNER_MINIO_CLIENT_PORT}'

11 volumes:

12 - minio_data:/data

13 env_file:

14 - .env

MinIO Server requires two distinct ports. The first port exposes a file management client that
is used by other services to manipulate the files, while the second port exposes a UI that can be
used to revisit stored objects in the server, as shown in Figure 4.5. Both ports are private, which
means that only users with access to the production server should have access to it.

Figure 4.5: MinIO Server UI. The audio files are stored in a bucket and can be consulted in the directory
named with the corresponding inference id

MinIO stores all its contents in /data directory by default, which is a docker volume minio_
data in the local machine. Hence, the data is preserved even if the container is deleted.

4.6 Back-end Services

The implemented services, i.e. the Model Server and the orchestrator API, were implemented
in Python. There were trade-offs to choose this language.

The development of an intelligent system requires a language with great support for Machine
Learning, as it will be constantly dealing with model inferences. Python is currently one of the

4.6 BACK-END SERVICES 21

most popular language for ML, making it a great choice for the project due to its large community
support and wide variety of frameworks and tools related to the area.

Particularly, the SPIRA models are developed with PyTorch library, which is exclusive for
Python language. Therefore, the use of Python is unavoidable to some extent, since the interface
between the model and the inference system needs to be defined.

In addition, building a project in the same language not only guarantees that there will not be
compatibility issues when interacting with the model, but also provides a variety of functionalities
from the dependencies that would otherwise not be available using another language.

Thus, the ML compatibility benefits of using Python far out-weight the cons, as they can be
easily handled to not jeopardize the implementation of the services.

The final tools used in the implementation are summarized in Figure 4.6.

Figure 4.6: Diagram showcasing the logos of the tools used to implement the inference system.

4.6.1 API

The inference management API service is the central component of the inference system. It is
responsible for receiving incoming inference requests from the PWA. It serves as an orchestrator,
sorting requests and sending each of them to the desired Model Server via broker. The system may
then be used to compare the performance of each model, validate them, and compare the models
for further improvements

The service uses two threads. The first thread is a web server which will be publicly exposed,
from where the UI client will communicate with the back-end system. The second thread is a listener
loop which is subscribed to a NATS topic. This topic is where all the incoming results from inference
models will be published. The listener thread will receive the messages and update the database
with the corresponding predictions for each inference.

The API also contains a database to control user, model and inference related data. The database
solution to be used for the project is MongoDB. The reason for this choice is the fact that MongoDB
is one of the most widely used NoSQL database solutions. It provides a simple way to store metadata
and evolve it over time without the need to use rigid schemas such as the ones used in a relational
database.

Further details about the implementation of the API will be given in Chapter 5.

4.6.2 Model Server

The component responsible for retrieving a model from the MLFlow server and making inferences
with it is the Model Server. As explained in Section 4.2,SPIRA will contain multiple Model Servers,
each wrapping a model from the registry.

The Model Server first retrieves the ML model from the registry and subscribes to a specific
NATS topic in initialization time. The API publishes messages in this given topic whenever it
processes inference requests for that particular model. The Model Server, which continuously listens
for messages incoming from the NATS server, receives the published message, processes the inference
using the retrieved model instance, and then publishes another message containing the pre-diagnosis
in the updates topic in which the API subscribed.

22 CHAPTER 4. ARCHITECTURE 4.7

As explained in Chapter 2, eventual consistency should be properly handled in order to guarantee
that inferences are being correctly processed by the system. One of the ways to cope with it is to
ensure that the operations are associative (batch-insensitive), commutative (order-insensitive), and
idempotent (duplication-insensitive). In the current research, operations are inferences made by
Model Servers.

Note that if there are multiple instances of a Model Server carrying the same ML model and,
therefore, listening to the same message topic, each Model Server instance will process the prediction
and send the corresponding result for an inference, referenced by its ID. Since both the model and
the input are equal to all instances, any result is valid. Therefore, the last update in the inference
result is the one which will be persisted in the database. Hence, the operation is batch-insensitive.

The model ID is part of the primary key of the inference entity, which means that an inference
relates to exactly one model of the system. Therefore, no particular order of inference requests will
give different final persisted data in the database. Hence, the operation is commutative.

Finally, if the same inference is processed multiple times, e.g., an inference request somehow
triggers multiple messages for the same Model Server, the effect is similar to having two distinct
instances of the same model, in which case the final result is still valid. Hence, the operation is also
idempotent.

With those three properties, we may ensure that, if the model prediction is correct, the system
will also correctly inform the result to the user.

Further details about the implementation of the Model Server will be given in Chapter 6.

4.7 UI

The UI Application is the PWA to be used by medical personnel. Users will send inference
requests through the UI and will also visualize inference results through it.

Currently, there exists a collection PWA which is being used for the new collection phase of the
SPIRA project. From now on, this App will be explicitly referenced as the "collection PWA" while
the App being developed in this research will be refereed as the "Inference PWA", "new PWA" or
simply "PWA".

The planning of the collection PWA passed through UX reviews and is already being used by
medical personnel. Since the collection and inference processes are identical to each other. Using
the same UI structure for the inference app not only helps with the adaptation of users to the new
app and also guarantees that no bias is added to the inference process due to changes in the UI
layout.

To further preserve the data flow of the collection PWA, the inference App also maintains
the same connections with collection back-end server to retrieve metadata necessary to build the
inference form.

The only existing data flow that needs to be redirected to the new orchestrator API is the form
submission. While the collection App uses it to store data in the collection server, the same dataflow
will be converted to a stream of inference requests. Therefore, it is possible to extend the collection
PWA so that it can be deployed in either collection or inference mode. This way, the same project
can be re-utilized for the development of the new PWA.

Chapter 5

API

The architectural pattern used in the API is the Hexagonal Architecture as shown in Figure 5.1.
The adapters implemented in it and the core business logic are explained in more detail in the
following sections.

Figure 5.1: Architecture of the API service.

5.1 Core

The core of the API is where the business logic is contained and it is composed of two compo-
nents: the entities and the services.

The entities are the definition of classes used inside the business logic. They were created using
Pydantic, a data validation Python library that enforces the use of type-hints. This package will be
used by the use cases to ensure that types are being followed correctly during run time.

The services, or use cases, should be immutable to the external dependencies (Coc). Therefore,
the core does not use environment variables. They are rather all used inside the adapters. Hence,
use cases are reliant solely on the inputs provided by the primary ports via Dependency Injection
to understand the circumstances of the call. Through this reasoning, the functional paradigm be-
comes more suitable to them rather than the object-oriented programming. Thus, the core was
implemented following the functional paradigm.

With the aforementioned decisions, environment changes do not interfere with business rules,
which facilitates the deployment of the system and promotes space decoupling, as promoted by the
reactive principles. Note that a functional core also ensures that a change in one of its use cases
will not be disruptive to other sections of the business logic, which is beneficial for future feature
requests directly related with the core.

The following example is a use case called by the endpoint showed previously for user creation:

23

24 CHAPTER 5. API 5.2

1 def create_new_user(

2 authentication_port: AuthenticationPort,

3 database_port: DatabasePort,

4 user_form: UserCreationForm,

5 token: Token,

6) -> None:

7 try:

8 if not authentication_port.validate_token(token):

9 raise DefaultExceptions.credentials_exception

10

11 _validate_new_user(database_port, user_form)

12

13 new_user = UserCreation(

14 username=user_form.username,

15 email=user_form.email,

16 password=user_form.password,

17)

18 new_user.password = authentication_port.get_password_hash(new_user.password)

19 database_port.insert_user(new_user)

20

21 except LogicException:

22 raise

23 except:

24 raise LogicException(

25 "Could not create new user", status.HTTP_500_INTERNAL_SERVER_ERROR

26)

The method first authenticates the call and proceeds with the user form validation. Once the
form is validated, the new user is then inserted in the database. If for any reason a failure happens
during this process, the exception is caught and informed to the client through the HTTP status
code in the response. Likewise, each endpoint in the router calls their respective service.

5.2 Web Server

The framework used to implement the web server was FastAPI, due to its better performance
in comparison with Flask. FastAPI also has built-in support for some of useful technologies, such
as the OAuth2.0 protocol that is used in the authentication system.

Additionally, FastAPI is able to automatically convert request body contents as Pydantic Base-
Models. This feature is particularly useful for POST requests such as user and inference creations.

Additionally, users are only allowed to perform inference operations within their own scope, that
is, /users/:user_id. Any request from a third-party user to an endpoint out of this scope will
generate a Forbidden Operation response.

The endpoints are abstracted in the Hexagonal Architecture as an adapter. Each endpoint is
declared as a python function in FastAPI. The router then calls the core method that will execute
the corresponding service. Following the same example of user creation, the implementation of the
/users endpoint is described below:

1 @router.post("/")

2 def create_user(

3 user_form: UserCreationForm,

4 token_content: str = Depends(oauth2_scheme)

5):

5.3 AUTHENTICATION 25

6 try:

7 create_new_user(

8 authentication_port,

9 database_port,

10 user_form,

11 Token(content=token_content),

12)

13 except LogicException as e:

14 raise HTTPException(e.error_status, e.message)

15 return {"message": "user registered!"}

A POST request in /users will call the method above, which will then call the create_new_
user method inside the core. The core method will add the entity in the database through the
database port and then the MongoDB adapter and will acknowledge the web server regarding the
success of the operation. The sequence of calls is described in more detail in the sequence diagram
of Figure 5.2.

Figure 5.2: User creation sequence diagram.

If the request is processed successfully, a response is returned with an HTTP status code 200
(Ok), otherwise, a LogicException object is thrown by the Core and the router converts it to an
HTTP response.

The implemented server supports requests at the endpoints described in Table 5.1.

5.3 Authentication

In contrast with the training sub-system, inference related operations using SPIRA models
are not designed to be publicly available. The intended use of the system is restricted to medical
personnel. Therefore, an authentication mechanism is necessary in order to satisfy this requirement.

The protocol to be used is OAuth 2.0. This protocol requires users to send their credentials to
an especial endpoint /users/auth, where they will be validated and responded with a token. The
users may then use this token to access the inference system and make requests using it.

The format of the token may vary according to projects decisions. The token pattern to be used
in this research is the JSON Web Token, mostly known as JWT (jwt22). JWT is composed of three
distinct strings. The first part is the header, where details regarding the algorithm used to encode
the token are stored. The second part is the payload, that may include any data relevant for the
application. The last is the signature, which is the most relevant part for authentication. The server
uses a private key alongside the header and the payload to encode the signature when creating the
token for a user. In case a malicious request is sent with a fake token, the server is able to validate

26 CHAPTER 5. API 5.3

Request Endpoint Description
GET /users/:user_id Retrieves the user entity from DB by the user ID
POST /users Creates a new user
POST /users/auth Authenticates user credentials
POST /models Creates a new model
GET /models/:model_id Retrieves the model entity from DB by the model

ID
GET /models Retrieves a list with all models
GET /users/:user_id/inferences/

:inference_id
Retrieves the inference entity from DB by the in-
ference ID

POST /users/:user_id/inferences Creates a new inference
GET /users/:user_id/inferences Retrieves the list of inference entities of a user
GET /users/:user_id/inferences/

:inference_id/result
Retrieves the result of an inference

Table 5.1: Endpoints supported by the orchestrator API.

by checking if this signature is correct given its private key, which is supposedly not accessible to
the client.

In accordance with the architecture pattern adopted, the authentication mechanism is imple-
mented as an adapter. The business logic is then responsible for implementing the OAuth2.0 proto-
col, while being completely agnostic to the JWT implementation. The adapter on the other hand,
is solely responsible for correctly implementing JWT authentication, while also being ignorant of
the fact that the OAuth2.0 protocol is being used. As a result, the protocol and the token pattern
may be changed for newer and more sophisticated versions in the future without interfering with
each other.

The core method to generate the token upon an authentication request is as follows:

1 def authenticate_and_generate_token(

2 authentication_port: AuthenticationPort,

3 database_port: DatabasePort,

4 username: str,

5 password: str,

6) -> Tuple[str, Token]:

7 try:

8 user: User = _authenticate_user(

9 authentication_port, database_port, username, password

10)

11 if user is None:

12 raise

13

14 token = authentication_port.generate_token(

15 data=TokenData(username=user.username)

16)

17 except:

18 raise DefaultExceptions.user_form_exception

19

20 return user.id, token

Users credentials are first authenticated and, in case they are valid, a token is generated through
the authentication port and adapter. The method proceeds returning the token. Note that in any

5.4 DATABASE 27

moment the core is informed that the token is a JWT. The sequence of calls is detailed in Figure 5.3.

Figure 5.3: User authentication sequence diagram.

5.4 Database

5.4.1 Description

The database stores information regarding four main entities: Users, Models, Inferences and
Results.

The Users collection stores the hashed passwords of the accounts. The hashed passwords are
then compared with login credentials to authenticate the access and generate the JWT token that
will be used in subsequent requests of that account.

The Models collection is related to the models that are available for use in the system. It also
contains the NATS topic in which the API will send inference request messages for that particular
model. Model Servers retrieving this a particular model should then subscribe to this topic in order
to receive the requests properly.

The Inferences collection contains all metadata related to inferences. The entity is currently
defined as a Pydantic BaseModel inside the Core as:

1 class Inference(BaseModel):

2 id: str

3 status: str

4 user_id: str

5 created_in: str

6 model_id: str

7 rgh: str

8 mask_type: str

9 gender: str

10 covid_status: str

11 local: str

12 age: Optional[int]

13 cid: Optional[str]

14 bpm: Optional[str]

15 respiratory_frequency: Optional[str]

16 respiratory_insufficiency_status: Optional[str]

17 location: Optional[str]

18 last_positive_diagnose_date: Optional[str]

19 hospitalized: Optional[str]

20 hospitalization_start: Optional[str]

28 CHAPTER 5. API 5.4

21 hospitalization_end: Optional[str]

22 spo2: Optional[str]

While the definition of inference is already set for the current phase of the SPIRA project, this
definition is still subject to change. The current definition of an inference is actually an improved
version of the preliminary implementation, which implies that future versions may also include
additional data.

This volatility in the definition is the main reason why a NoSQL database is more suitable for
the purposes of this research. A relational database would require constant back-fills of missing
information each time the definition of an inference is changed, while a NoSQL database, such as
MongoDB, is able to support all the definitions at once.

The Results collection contains the results of an inference and its entities contain the output of
the model along with the final pre-diagnosis given by it. They are stored in a different table, because
despite the current implementation mapping an inference request to only one result, the system may
be adapted in the future to trigger multiple model predictions with one inference request. In this
case, it is useful to maintain the separation between the two entities so that this feature can may
be implemented more easily.

5.4.2 Implementation

The database service is a docker container pulling the NongoDB image. The image does not
provide means to visualize the data stored in the DB such as with NATS and MinIO. However,
there are third-party solutions that can be used to provide the direct access to MongoDB. The
solution used in this case was a new container pulling the mongo-express image, which exposes a
UI in a private port of the local machine to visualize the database, as show in Figure 5.4.

1 mongo:

2 image: mongo

3 restart: always

4 env_file:

5 - .env

6

7 mongo-express:

8 image: mongo-express

9 restart: always

10 depends_on:

11 - mongo

12 env_file:

13 - .env

14 ports:

15 - '${ME_PORT}:${ME_INNER_PORT}'

The UI not only provides a visualization of the data, but also a way to manually add and change
entities in the collections of the database.

5.5 INFERENCE REQUESTS 29

Figure 5.4: Mongo Express UI. The UI can be used to directly interact with the database.

5.5 Inference Requests

The main data flow of the API are the inference requests. Upon receiving a POST request at
/users/:user_id/inferences, the API will receive the request and store a new inference
entity in the database, following the sequence diagram described in Figure 5.5.

Figure 5.5: Database sequence diagram for inference requests. Once inference requests are received,
the web server calls the core, which then calls the database port to store the entity in the Mongo DB.

Once the entity is inserted in the database, the new inference ID is returned to the core and the
method will proceed storing the audio recording files from the body of the request in the MinIO
server, following the sequence described in Figure 5.6.

30 CHAPTER 5. API 5.5

Figure 5.6: File storage sequence diagram for inference requests. Audio files are stored in MinIO
server to be retrieved by Model Servers later.

The inference request is currently composed of four distinct audio recordings:

• Acceptance: verbal acceptance of the terms of service.

• Sustained: sustained vowel for as long as the subject can hold on.

• Rhyme: a nursery rhyme presented by the app.

• Sentence: a sentence presented by the app.

The four audio files are stored in the audio-files bucket, at a directory named with the ID
obtained from the database insertion.

Finally, once the storage port acknowledges the core that the files were inserted, the method
proceeds publishing a new message in the topic of the requested model. The sequence is described
in Figure 5.7. The message body contains the encoded inference entity described in Section 5.4.

Figure 5.7: Message service sequence diagram for inference requests. Published message will be
received by a Model Server subscribed to the model topic.

As explained in Section 2.3, a microservice has no information regarding the health of another
microservice. While the Model Server is able to decide whether to process a request or not due to
momentary degradations, the API is prepared to receive a late or unsuccessful response from the
Model Server. For this reason, the API sends a successful response to the client once the message

5.6 DEPLOYMENT 31

is successfully sent to the NATS broker, without waiting for an acknowledgment that the inference
was received or processed. The API then reacts to incoming responses when a Model Server does
manage to process an inference request, but does not stop its execution in case no response is
obtained.

5.6 Deployment

The docker image of the API is built through a Dockerfile that pulls a Python image. The
resulting image can then be uploaded to DockerHub (doc22) as shown in Figure 5.8, from where it
can be pulled to assemble the production system.

The production repository is located at https://github.com/spirabr/SPIRA-Inference-System.
It contains two docker-compose files, one solely for the model-server service and another containing
all the rest of the back-end system. This separation is necessary so that Model Servers can be added
and removed from the inference system without the need to restart the entire system.

The deploy is hosted in an on-premise server. The production repository was cloned in the
machine and a .service file was created to run the API service as a systemd unit.

A continuous delivery pipeline was set up with GitHub Actions to automatically upload images
to DockerHub upon a tag creation in the development repository.

GitHub Actions are configured through .yaml files in the .github/workflows directory
inside the repository. The tags of the images were configured to be the same as the pushed tags in
the repository.

Figure 5.8: Docker Hub image repositories for the API service. Images are automatically pushed
to Docker Hub upon new tag creations in GitHub.

In order to prevent man-in-the-middle attacks between the UI client and the API, an HTTPS
connection was setup between the two. The TLS certification was setup using Caddy Server as a
reverse proxy to the orchestrator API.

The main advantage of using Caddy instead of other services such as Nginx is that Caddy has
TLS automation features which are considered safe and modern by the literature (ABC+19), thus
facilitating the configuration of a reverse proxy.

https://github.com/spirabr/SPIRA-Inference-System
https://caddyserver.com/
https://www.nginx.com/

Chapter 6

Model Server

The architecture pattern used for the Model Server is the Hexagonal Architecture and is repre-
sented in Figure 6.1. Similarly to the API service, the core of the Model Server is purely functional,
while ports and adapters are singletons.

Figure 6.1: Architecture of the Model Server.

6.1 Registry Adapter

The model is recovered from the MLFlow server during Model Server initialization. More pre-
cisely, this retrieval happens inside the MLFlow adapter as presented below:

1 class MLFlowAdapter:

2 def __init__(self, conn_url, model_path):

3 logging.info("setting mlflow adapter.")

4 self._wait_for_server_connection()

5 mlf.set_registry_uri(conn_url)

6 logging.info("connected to mlflow server.")

7 self._model = mlf.pyfunc.load_model(model_uri=model_path)

8 logging.info("model loaded successfully.")

9

10 def predict(

11 self, inference: Inference, inference_files: InferenceFiles

12) -> Tuple[List[float], str]:

13 return self._model.predict([inference.dict(),inference_files.dict()])

When the adapter is first instantiated, it tries to connect to the MLFlow server. Once the con-
nection is established, the correct model is loaded through a path passed as an environment variable
to the adapter. The model instance is stored and will be subsequently used to make predictions.

32

https://pt.wikipedia.org/wiki/Singleton

6.2 INFERENCE MESSAGES 33

As cited in Chapter 3, it is important to have a well-defined interface for prediction between
the model instances and the MLFlow adapter.

The built-in standardized file system for Python models used by MLFlow is called Pyfunc. Along
with the file system conventions, PyFunc also provides the abstract class PythonModel that should
be inherited by the models in order to store them in the MLFlow server. SPIRA models will then
need to implement the following template:

1 from mlflow.pyfunc import PythonModel

2

3 class ModelTemplate(PythonModel):

4

5 def load_context(self, context) -> None:

6 """

7 This method is called as soon as the model is instantiated.

8

9 The same context will also be available during calls to predict,

10 but it may be more efficient to override this method and load

11 artifacts from the context at model load time.

12

13 :param context: A :class:`~PythonModelContext` instance containing artifacts

14 that the model can use to perform inference.

15 """

16 pass

17

18 def predict(self, context, model_input) -> Tuple[List[float],str]:

19 """

20 Evaluates the inference files and metadata and returns a prediction.

21

22 :param context: A :class:`~PythonModelContext` instance containing artifacts

23 that the model can use to perform inference.

24 :param model_input: A list of two dictionaries, the first containing inference

25 metadata and the second containing audio file byte arrays.

26

27 returns: A Tuple where the first element is a list of numbers and the second is

28 the diagnosis string ("positive", "negative", "inconclusive").

29 """

30 pass

The load_context method is called during model initialization time and it is an optional
method for custom initial setups.

The predict method is the one used to make inferences with the model. The expected input
is a dictionary containing both the inference metadata and the byte arrays of the audio recordings,
while the expected output is a Tuple where the first element is the model output, i.e., a list of
numbers, and the second element is the diagnosis given by the model.

The adapter will then make use of this template to format the return value of the prediction
into the result message for the API.

6.2 Inference Messages

The Model Server contains only one primary port given by a listener thread. The thread contin-
uously calls the NATS adapter to look for incoming messages at the NATS server in a topic specified
among the environment variables. Once a message is received, the core will call the storage port to
retrieve the audio files stored by the API in the MinIO server, as described in Figure 6.2.

34 CHAPTER 6. MODEL SERVER 6.3

Figure 6.2: Model Server retrieving audio files from MinIO server

With the audio files and the inference metadata obtained from the received NATS message, the
core is able to build the input for the ML model stored in the MLFlow adapter. The sequence of
calls follows Figure 6.3. Once the model returns the prediction result, the core encodes it in a NATS
message and publishes it in the updates topic being consumed by the orchestrator API.

Figure 6.3: Model Server using the model to make predictions

6.3 Deployment

6.3.1 ML Pipeline

While MLFlow allows model creation directly through the UI, there are additional steps that are
necessary for the deployment of the model besides registering it in MLFlow server. The deployment
of a new model in the inference system can be summarized in the following steps:

1. Model entity insertion in database: A new model entity needs to be inserted in the
database with its name and topic to be used in the message service broker to receive inference
request messages.

2. Model registration in MLFlow server: The model should be loaded to a Python script
which connects to the MLFlow server and registers it in the server.

3. Deployment: Once the model is available in the MLFlow server, the production repository
(inf22) needs to be cloned to a new directory and the respective environment variables pointing
to the model path in the MLFlow server should be set. The service is then ready to be started.

6.3 DEPLOYMENT 35

4. Versioning: New versions of the same model can also be uploaded to the registry. The
staging and production versions of each model can be selected through the MLFlow UI shown
in Figure 4.4.

The deployment is similar for all models in the system, therefore a pipeline executing the steps
above was developed to automate it at https://github.com/spirabr/Inference-System-ML-Pipeline.
Although it is still possible to make manual deploys to the system, the new pipeline is the recom-
mended procedure to make models available in production.

The same pipeline can also be executed to upload new model versions to production. This can
be done by specifying the name of an existent model, which is guaranteed to be unique in the
database by the API service.

6.3.2 Microservice

The development repository (mod22) contains both the implementations of the Model Server
and the MLFlow server. Similarly to the API, a CD pipeline was created with GitHub Actions to
automatically upload both images to Docker Hub whenever a new tag is pushed to the repository.

Figure 6.4: Docker Hub repositories of the Model Server and the model registry

As described in Chapter 5, the repository used in production is at https://github.com/spirabr/
SPIRA-Inference-System. The MLFlow server is deployed in the same docker-compose file as the
API service, thus they are part of the same systemd unit. The Model Server, on the other hand,
is deployed as a separate unit so that Model Servers can be added, updated and deleted without
interfering with the rest of the system.

https://github.com/spirabr/Inference-System-ML-Pipeline
https://github.com/spirabr/SPIRA-Inference-System
https://github.com/spirabr/SPIRA-Inference-System

Chapter 7

UI

As described in Section 4.2, a collection PWA was developed inside SPIRA (PWA22). The
collection App was designed to guarantee that the layout of the application does not interfere with
the reading process of the patients.

To prevent additional bias from being added to the audio recording process, the new app was
developed as a different deploy mode of the collection app, thus sharing a great part of the UI layout.
The project repository is at https://github.com/spirabr/PWA-App/tree/feature/inference-app.

The Inference App is hosted inside Netlify. The deployment requires a branch from the project
repository which will serve as a production branch. Netlify then sets an automatic CD pipeline that
updates the application deploy whenever a new push is made to this branch, without the need to
use custom Webhooks.

Although the application was developed to be used mainly in mobile platforms, the PWA is also
compatible with desktop platforms. Users can also choose between using the application directly
from the browser or installing the app in the device as showcased in Figure 7.1.

Figure 7.1: Inference App installed in a mobile device.

Despite being a deploy mode of the collection app, to work as intended, the new PWA required
additional features that were not present in the collection PWA. The features implemented are
described in the following sections.

7.1 User Access

While the API provides the mechanisms for authentication, as seen in Section 5.3, the UI needs
to react accordingly blocking the access of unauthorized users to the application and forbidding
users from requesting inference data that they do not own.

The new application contains a new Sign In page that users must pass through to access the
remaining UI. The credentials from the page are sent to the API where they are validated. Once the
client is authenticated, the application proceeds storing the token locally to send it in the header of
all subsequent requests until it expires or the user signs out of the system. In these cases, the user
is redirected to the Sign In page. This new page is presented in Figure 7.5.

36

https://github.com/spirabr/PWA-App/tree/feature/inference-app
https://www.netlify.com/

7.3 INFERENCE FORM 37

7.2 Inference Form

As cited before, inference and collection processes are similar regarding input generation. Infer-
ences require one additional information regarding the model to be used to make the prediction.

In accordance to that, the new form contains a new select field that retrieves the list of models
from the API and the final request now includes the ID of the selected model as shown in Figure 7.3.

Once the form is filed, the user is redirected to make the voice recordings, as shown in Figure 7.4.
At the end of the recording process, the user may send the inference request to the API.

7.3 Inference List

After the inference is registered in the back-end, the user may revisit them and check their status
through the inferences page. Medical personnel utilize RGH as a unique identifier to the patients.
In order to identify an inference, users need to be provided with the following information along
with the final diagnosis:

• Hospital: Hospital from where the inference was sent. This column is necessary in case
inference requestors send requests from different hospitals.

• Patient RGH: RGH is the unique patient identifier used by a hospital.

• Model: Inferences are intended to be directed to a model. Users should be provided with the
model that they chose for a particular inference.

• Inference Date: As many inferences may be requested for the same user with the same model,
the timestamp of the inference request is also provided for users to identify the inferences they
are looking for.

• Status: As cited, users need information regarding the stage of the inference request.

• Diagnosis: The diagnosis is needed to show the result of the inference once it is completed
or it halts due to an error.

Users can identify an inference with the first four columns and infer the current situation of it
with the last two columns. The final desktop layout of the page is presented in Figure 7.2. It is
possible to sort the inferences in ascending or descending order with respect to any of the parameters
by clicking in the headers of the table.

Due to the width of the mobile screens, a different layout was necessary to show the results for
mobile users. The mobile display of the same page is presented in Figure 7.6

Similarly to the desktop version, users are able to sort the inferences by selecting the field at
the top of the page.

Figure 7.2: Inference list page for desktop users

38 CHAPTER 7. UI 7.3

Figure 7.3: Inference form page. Users fill
the form before making the audio recordings.

Figure 7.4: Inference audio recording page.
Users need to follow the instructions in the screen
to record the audios.

Figure 7.5: Sign In page in the inference
app. Users should have an account to access the
system.

Figure 7.6: Inference form page for mobile
users. The application changes the layout of the
page to a cards display instead of a table.

Chapter 8

Tests

8.1 TDD

Tests were a major step in the development process of the inference system to ensure it works
correctly. Therefore, development techniques that are strongly related to tests were adopted, espe-
cially the TDD (Bec03).

TDD, or Test Driven Development, is a technique that uses short development and testing
cycles to implement the requirements of an application. While TDD was not used for the whole
development of the research, a substantial part of the features was implemented using this method.

The development cycle consists of the following steps:

1. Write a test that covers a requirement of the system.

2. Develop the program to pass in the tests.

3. Refactor the code.

4. Repeat the process until all requirements are satisfied.

This way, tests written by the developer are highly related to the requirements of the system
without being biased by the implementation details to achieve them. The technique also encourages
developers to write more tests as they become a standard procedure for the implementation of new
features in the project (EMT05).

While a certain overhead is added to the development process due to the necessity of writing
new tests, the return of investment obtained from adopting TDD is highly correlated with Quality
Assurance benefits (MP03). While the current project aims to provide a definitive solution for
SPIRA model inferences, this research assumed that the advantages of TDD will outweigh the
disadvantages in the long term.

8.2 Test Hierarchy

Tests made can be subdivided in categories, according to their scope:

• Unit Tests: Responsible for testing the behavior of classes and methods.

• Integration Tests: Responsible for testing the connection between components.

• System Tests: Responsible for testing major system data flows.

39

40 CHAPTER 8. TESTS 8.2

8.2.1 Unit Tests

Unit tests were made with Pytest. They were used to test the behavior of classes and methods
inside the model server and the API service. The three main sections of unit tests are divided in
tests for the adapters, ports, and the core. In the case of adapters and ports, tests were used to
verify the behavior of the classes public methods, whereas for the services located inside the core,
the methods themselves were directly tested, as the use cases are purely functional.

The following example is a unit test to check whether the adapter is retrieving a model properly
from the database.

1 def test_get_model_by_id(database_adapter: MongoAdapter):

2 model = database_adapter.get_model_by_id("629f992d45cda830033cf4cd")

3

4 assert model == {

5 "_id": ObjectId("629f992d45cda830033cf4cd"),

6 "name": "fake_model",

7 "publishing_channel": "fake_channel_2",

8 }

The unit test above is responsible for testing whether the behavior of the database adapter is
correct. To fully isolate the adapter and only test its behavior, both ends were substituted by mocks.
On one hand, the MongoDB client used by the adapter instance is mocked to return false values
upon calls to the database. On the other hand, the calls made to the adapter, which should come
from the ports layer, is also faked by directly calling the method inside the test, further isolating
it from the business logic of the microservice. Thi way, the test can check whether the behavior is
correct without the interference of the database connection or the behavior of other layers inside
the microservice.

With each layer of the hexagonal architecture being isolated through the mocks, the origin of
an error can be more easily identified, as unit tests will point out the layer and class responsible for
the faulty behavior.

8.2.2 Integration Tests

Integration tests were used to check the connection between the containers of the system. Unlike
unit tests where connections are mocked, integration tests require the components of the system to
be lifted in order to perform them. While Pytest was still used to make the tests, a special tester
service was created containing both the microservice source code and the test code, so that after
the containers are started, the tests can be executed from within the microservice container. More
details on how the tester service was set up are given in Section 8.3.

In the same example using database tests, the same test was made without mocking the MongoDB
client used by the adapter instance. Hence, the test now depends on the connection between the
adapter and the database being properly set up to succeed.

Note that repeating the same test without the mocked database allows one to diagnose the root
of an error within the system more efficiently. Failing in the unit test first would imply that the
behavior of the method itself is faulty, while passing in the unit test but not in the integration
test implies that the adapter behavior is correct, but the connection with the database is not. The
procedure was then repeated with other components in the system.

Another set of tests was also used to test the integration between the core, ports and adapters.
While they do not check the connection between components, they are useful to check the cohesion
between the layers of the main services in the system.

https://docs.pytest.org/en/7.2.x/

8.3 TEST HIERARCHY 41

8.2.3 System Tests

System tests aim to test the application from end to end. In this case, the entire project is
started and requests or messages are artificially sent from outside the docker network to test the
expected behaviors of the system. Therefore instead of using python scripts, tests were created
using bash scripts that are called from outside the containers. The following example is a bash
script testing the retrieval of inferences, including expected behaviors on malformed, unauthorized,
and forbidden cases.

1 #!/bin/bash

2 # some details were ommited for the sake of visualization

3 RESPONSE_STATUS="$(curl \

4 --write-out '%{http_code}' --silent --output /dev/null \

5 'localhost:3000/v1/users/639686c4ba1604f1387a6c00 \

6 /inferences/638f56f70acda5864ee0203a' \

7 --header "Authorization: Bearer $TOKEN")"

8

9 ...

10

11 FORBID_RESPONSE_STATUS="$(curl \

12 --write-out '%{http_code}' --silent --output /dev/null \

13 'localhost:3000/v1/users/639686c4ba1604f1387a6c01 \

14 /inferences/638f56f70acda5864ee0203b'\

15 --header "Authorization: Bearer $TOKEN")"

16

17 # tests a successfull request

18 if ["$RESPONSE_STATUS" -eq 200]

19 then

20 echo 'PASSED';

21 else

22 echo 'FAILED';

23 exit 1;

24 fi;

25

26 ...

27

28 # tests a forbidden request

29 if ["$FORBID_RESPONSE_STATUS" -eq 403]

30 then

31 echo 'PASSED';

32 else

33 echo 'FAILED';

34 exit 1;

35 fi;

Combined with unit and integration tests, system tests are useful to inspect problems in the
general data flow without the need to concern with the behavior of particular methods, as they
were already tested in unit tests, or the connection between containers inside the docker network,
since they were also checked in integration tests.

They are also helpful to preserve the behavior of the system during feature requests, which
further ensures that the back-end will behave as expected for outside components such as the UI
client.

42 CHAPTER 8. TESTS 8.4

8.3 Multi-Stage Build

Unit tests of single methods can be done by directly running python test files. However, inte-
gration tests that are responsible for testing the connection between the components of the project
require a more sophisticated approach.

One way to solve this problem is to use Docker multi-stage builds. Multi-Stage builds is a feature
of Docker used to define various build stages in a single Dockerfile. Developers can then define the
stage in which the system should stop building and use the image for specific purposes such as tests
and deployments. The Dockerfile of the current project contains three different build stages:

• base:
base is responsible for configuring the environment to be used by the next stages. It pulls the
Python image and installs Poetry to manage the dependencies afterwards. It is also responsible
for setting the environment variables.

• dev:
dev is the stage that copies the source code and the test code to the image. This image is
used to run the tests with the containerized system.

• prod:
prod is the stage that only copies the source code and its necessary dependencies. The image
is built to run in production.

For each test subroutine at all levels of the hierarchy, the whole system is lifted and stopped
before the next subroutine. Particularly, both the API and the model server containers are built
with their respective dev images, which contain both source and test code. Unit tests and connection
tests are then performed from inside these central containers.

In contrast, system tests are performed with the prod image, where no test code is contained in
the project and tests are execute from outside the system.

8.4 CI Pipeline

Similarly to the CD pipeline, the CI Pipeline was implemented in the project with GitHub
Actions. GitHub Actions provide a runner to run custom jobs given a certain event. For both
development repositories, it was decided that the pipeline would run upon pull requests to the main
branch.

The execution of tests was automated using Makefiles. They were particularly useful due to
the possibility of organizing them in test sections using makefile targets. Each section can then be
called separately during development, and a central target was made to run all sections, starting
from unit tests, then integration tests and, finally, system tests.

In total, around 170 tests were created for the model server and the API service combined,
including unit, integration and system tests.

https://python-poetry.org/

Chapter 9

Conclusion

9.1 Results

An intelligent reactive microservices system was implemented to process respiratory insufficiency
inference requests. The system is fully deployed and medical personnel are able to make use of it
once the next generation of SPIRA models are deployed in the system.

To achieve this objective, the current research was divided in 4 main stages. Chapter 2 was
the research for theoretical concepts that were relevant for the planning of the system. Chapter 3
focused on the lessons learned from a preliminary version of the inference system. Chapter 4 focused
on the architectural decisions made based on the acquired concepts and lessons learned. Finally,
Chapter 5, Chapter 6 and Chapter 7 showed the implementation process of each component of the
final inference system.

Lessons learned from Chapter 3 showed that MLOps practices were crucial for the quality
assurance of the system. The adoption of these practices was made through the creation of a ML
pipeline to automate the deploy of new models to the inference system, the creation of CI/CD
pipelines to automate the testing and deploy of new features, and the adoption of appropriate
patterns to implement the architecture and design of the microservices.

Figure 9.1: MLOps milestones achieved in the research

Applying MLOps principles solved the main challenges faced in the preliminary implementation:
reproducibility and ease of deploy.

Finally, an article describing some of the experiences of this research was written and published
(FGT+22).

9.2 Next steps

While the inference system was successfully implemented, there are still improvements to be
made to the project.

43

https://sol.sbc.org.br/index.php/ise/article/view/22530/22354

44 CHAPTER 9. CONCLUSION 9.2

9.2.1 Model feedback

While the system offers inference services as initially planned, the inference data stored in
the system may be used as feedback input to further train the models and continuously improve
their performance. Nevertheless, this feedback process should be carefully planned, as a poorly
implemented pipeline may leave the model exposed to possible adversarial attacks to worsen its
performance, which would be extremely harmful for the project.

9.2.2 NATS improvements

As the system demand and the number of model servers increase, the load of messages managed
by NATS broker is only set to grow. In that case, adding clustering support for NATS would be a
great addition for the sake of horizontal scalability of the system.

9.2.3 Load balancer

While the definitive system is fully deployed, there is only one API service instance running in
the host machine. If the load of the service grows, the ideal solution is to create more instances of
the services and a load balancer to distribute the loads between them. This can be accomplished
with the use of Docker Stacks, which were not used in the current research.

9.2.4 UI improvements

The current UI does satisfy all the requirements needed. However, there are currently bug-fix
requests for the collection App that also affect the inference App, as they share a great part of its
code base.

9.2.5 Training pipeline

The MLFlow server was a great addition to the inference system to implement the best practices
of MLOps. However, SPIRA models are now required to follow a defined template and adapt to
the correct I/O formats in order to be stored in MLFlow server. A pipeline can be built to make
trained models compatible with the Model Server.

Bibliography

[ABC+19] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan Flores-
López, J Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric Rescorla, et al.
Let’s encrypt: an automated certificate authority to encrypt the entire web. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 2473–2487, 2019. 31

[Bec03] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,
2003. 39

[Bon16] Jonas Bonér. Reactive Microservices Architecture. O’Reilly Media, Inc., 2016. 5,
7

[Cam65] EJM Campbell. Respiratory failure. British medical journal, 1(5448):1451, 1965. 3

[CCN+00] Jason W Chien, Russell Ciufo, Ronald Novak, Mary Skowronski, JoAnn Nelson, Albert
Coreno, and ER McFadden Jr. Uncontrolled oxygen administration and respiratory
failure in acute asthma. Chest, 117(3):728–733, 2000. 3

[CF20] Jennifer Couzin-Frankel. The mystery of the pandemic’s ‘happy hypoxia’, 2020. 3

[CGC+21] Edresson Casanova, Lucas Gris, Augusto Camargo, Daniel da Silva, Murilo Gazzola, Es-
ter Sabino, Anna Levin, Arnaldo Candido Jr, Sandra Aluisio, and Marcelo Finger. Deep
learning against COVID-19: Respiratory insufficiency detection in Brazilian Portuguese
speech. In Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 625–633, Online, August 2021. Association for Computational
Linguistics. 3, 10, 11, 14

[Coc] Alistair Cockburn. Hexagonal architecture. 8, 23

[DLT+17] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara, Ruslan
Mustafin, and Larisa Safina. Microservices: How To Make Your Application Scale.
arXiv e-prints, page arXiv:1702.07149, February 2017. 6

[doc22] Spira images. https://hub.docker.com/u/uspcodelab, 2022. Accessed: 2022-10-26. 31

[DS94] Joseph V DiCarlo and James M Steven. Respiratory failure in congenital heart disease.
Pediatric Clinics of North America, 41(3):525–542, 1994. 3

[EGHS16] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops. Ieee
Software, 33(3):94–100, 2016. 5

[EMT05] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the effectiveness of the
test-first approach to programming. IEEE Transactions on software Engineering,
31(3):226–237, 2005. 39

[FGT+22] Renato Cordeiro Ferreira, Dayanne Gomes, Vitor Tamae, Francisco Wernke, and Alfredo
Goldman. Spira: Building an intelligent system for respiratory insufficiency detection.

45

https://hub.docker.com/u/uspcodelab

46 BIBLIOGRAPHY

In Anais do II Workshop Brasileiro de Engenharia de Software Inteligente,
pages 19–22. SBC, 2022. 43

[FY97] Brian Foote and Joseph Yoder. Big ball of mud. Pattern languages of program
design, 4:654–692, 1997. 6

[Hul18] Geoff Hulten. Building Intelligent Systems. Apress, 2018. 4

[Hut18] Matthew Hutson. Artificial intelligence faces reproducibility crisis, 2018. 5

[inf22] Spira inference system. https://github.com/spirabr/SPIRA-Inference-System, 2022.
Accessed: 2022-10-26. 34

[jef08] The onion architecture : part 1. https://jeffreypalermo.com/2008/07/
the-onion-architecture-part-1/, 2008. Accessed: 2022-12-18. 8

[jwt22] Jwt. https://jwt.io/, 2022. Accessed: 2022-11-29. 25

[lgp18] Lei nº 13.709, de 14 de agosto de 2018. http://www.planalto.gov.br/ccivil_03/
_Ato2015-2018/2018/Lei/L13709.htm, 2018. Accessed: 2022-12-23. 19

[Mar96] Robert C Martin. The dependency inversion principle. C++ Report, 8(6):61–66,
1996. 7

[MGB+18] Robert C Martin, James Grenning, Simon Brown, Kevlin Henney, and Jason Gorman.
Clean architecture: a craftsman’s guide to software structure and design.
Number s 31. Prentice Hall, 2018. 8

[min22] Minio. https://min.io/, 2022. Accessed: 2022-11-06. 19

[mlf22] Mlflow tracking server. https://www.mlflow.org/docs/latest/tracking.html, 2022. Ac-
cessed: 2022-11-06. 15

[mod22] Spira inference service. https://github.com/spirabr/SPIRA-Inference-Service, 2022.
Accessed: 2022-12-29. 15, 35

[MP03] Matthias M Müller and Frank Padberg. About the return on investment of test-driven
development. In Edser-5 5 th international workshop on economic-driven soft-
ware engineering research, page 26, 2003. 39

[nat22] Nats. https://nats.io/, 2022. Accessed: 2022-11-06. 17

[PWA22] Spira pwa app. https://github.com/spirabr/PWA-App/, 2022. Accessed: 2022-10-18.
36

[rea14] Reactive manifesto. https://www.reactivemanifesto.org/, 2014. 6, 7

[reg22] Mlflow server. https://github.com/Fernando-Freire/MLFlow_docker_compose_
template, 2022. Accessed: 2022-10-30. 15

[RK03] Charis Roussos and A Koutsoukou. Respiratory failure. European Respiratory
Journal, 22(47 suppl):3s–14s, 2003. 3

[RTA+21] Ahsab Rahman, Tahani Tabassum, Yusha Araf, Abdullah Al Nahid, Md Ullah, Mo-
hammad Jakir Hosen, et al. Silent hypoxia in covid-19: pathomechanism and possible
management strategy. Molecular biology reports, 48(4):3863–3869, 2021. 3

[Rus15] Alex. Russell. "progressive web apps: Escaping tabs without losing
our soul". retrieved june 15, 2015. https://infrequently.org/2015/06/
progressive-apps-escaping-tabs-without-losing-our-soul/, 2015. 9

https://github.com/spirabr/SPIRA-Inference-System
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jwt.io/
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709.htm
https://min.io/
https://www.mlflow.org/docs/latest/tracking.html
https://github.com/spirabr/SPIRA-Inference-Service
https://nats.io/
https://github.com/spirabr/PWA-App/
https://www.reactivemanifesto.org/
https://github.com/Fernando-Freire/MLFlow_docker_compose_template
https://github.com/Fernando-Freire/MLFlow_docker_compose_template
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

BIBLIOGRAPHY 47

[SLK09] Meghna R Sebastian, Rakesh Lodha, and SK Kabra. Swine origin influenza (swine flu).
The Indian Journal of Pediatrics, 76(8):833–841, 2009. 3

[SVdB22] Deeks JJ Dinnes J Takwoingi Y Davenport C Leeflang MMG Spijker R Hooft L Emper-
ador D Domen J Tans A Janssens S Wickramasinghe D Lannoy V Horn SR A Struyf,
T and A Van den Bruel. Signs and symptoms to determine if a patient presenting in
primary care or hospital outpatient settings has covid-19. Cochrane Database of
Systematic Reviews, (5), 2022. 3

[Teo20] Jason Teo. Early detection of silent hypoxia in covid-19 pneumonia using smartphone
pulse oximetry. J. Med. Syst., 44(8):134, June 2020. 3

[TLJ20] Martin J Tobin, Franco Laghi, and Amal Jubran. Why COVID-19 silent hypoxemia
is baffling to physicians. Am. J. Respir. Crit. Care Med., 202(3):356–360, August
2020. 3, 4

[TOS+20] Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim Zentici,
Adrien Lavoillotte, Makoto Miyazaki, and Lynn Heidmann. Introducing MLOps.
O’Reilly Media, 2020. 5

	List of Figures
	Introduction
	Concepts
	Intelligent Systems
	Use cases
	MLOps

	Microservices Architecture
	Reactive Systems
	Layered Architecture
	Hexagonal Architecture
	Progressive Web Application (PWA)

	Preliminary Implementation
	Context
	Challenges
	Lessons learned
	Well-defined interfaces
	Dependency Management
	Automated Tests
	MLOps

	Architecture
	Objectives
	Context
	Model Registry
	Description
	Implementation

	Message Service
	Description
	Implementation

	Storage
	Description
	Implementation

	Back-end Services
	API
	Model Server

	UI

	API
	Core
	Web Server
	Authentication
	Database
	Description
	Implementation

	Inference Requests
	Deployment

	Model Server
	Registry Adapter
	Inference Messages
	Deployment
	ML Pipeline
	Microservice

	UI
	User Access
	Inference Form
	Inference List

	Tests
	TDD
	Test Hierarchy
	Unit Tests
	Integration Tests
	System Tests

	Multi-Stage Build
	CI Pipeline

	Conclusion
	Results
	Next steps
	Model feedback
	NATS improvements
	Load balancer
	UI improvements
	Training pipeline

	Bibliography

